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Vision for Space Exploration

• The Vision for Space 
Exploration (VSE) directs 
NASA to pursue a long-
term human and robotic 
program to explore the 
solar system.

• The VSE is based on the 
following goals:

– Return the shuttle to flight 
(following the Columbia 
accident) and complete the 
International Space Station 
by 2010.

– Develop a Crew Exploration 
Vehicle, test by 2008, first 
manned mission no later 
than 2014. 

– Return to the Moon as early 
as 2015 and no later than 
2020.

• Gain experience and 
knowledge for human missions 
to Mars.

• Increase the use of robotic 
exploration to maximize our 
understanding of the solar 
system. 
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Constellation Program

• The Constellation Program consists of multiple projects, 
jointly being developed to fulfill the goals of the VSE.
Ares V Launch

Vehicle
Ares I Launch

Vehicle

Orion Crew
Exploration Vehicle

Lunar Lander

Lunar Outpost
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Surviving the Radiation Environment

• Space Radiation 
affects all spacecraft.
– Spacecraft electronics 

have a long history of 
power resets, safing, 
and system failures 
due to:

• Long duration 
exposures,

• Unpredictable solar 
proton activity,

• Ambient galactic 
cosmic ray 
environment.
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The Radiation Environment

• Multiple approaches may be employed (independently or in 
combination) to protect electronic systems in the radiation 
environment:
– Shielding,
– Mission Design (radiation avoidance),
– Radiation Hardening by Architecture,

• Commercial parts in redundant and duplicative configurations (Triple Module 
Redundancy),

• Increases overhead in voting logic, power consumption, flight mass
• Multiple levels of redundancy implemented for rad-damage risk mitigation:

– Component level
– Board level
– Subsystem level
– Spacecraft level

– Radiation Hardening by Design,
• TMR strategies within the chip layout,
• designing dopant wells and isolation trenches into the chip layout,
• implementing error detecting and correction circuits, and
• device spacing and decoupling.

– Radiation Hardening by Process,
• Employ specific materials, processing techniques, 
• Usually performed on dedicated rad-hard foundry fabrication lines.
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Radiation Hardened Assurance

• NASA spacecraft developers have defined a Radiation 
Hardness Assurance (RHA) methodology process*.

• In general, the process may be described by the following 
steps:
– 1) define the radiation hazard,
– 2) evaluate the hazard,
– 3) define the requirements to be met by the spacecraft’s electronics,
– 4) evaluate the electronics to be used,
– 5) engineer processes to mitigate hazard damage, and 
– 6) iterate on the methodology, if and when necessary.

• To promote the successful implementation of RHA for 
Constellation (and other NASA) missions, the RHESE project 
aims to deliver products that assist in mitigating the hazard 
damage. 

*LaBel, K. A., Johnson, A. H., Barth, J. L., Reed, R. A., and Barnes, C. E., “Emerging Radiation 
Hardness Assurance(RHA) Issues: A NASA Approach for Space Flight Programs,” IEEE Transactions 
on Nuclear Science, Vol. 45, No. 6, Dec. 1998, pp. 2727-2736.
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The specific goals of the RHESE project are to foster technology 
development efforts in radiation-hardened electronics possessing 
these associated capabilities:

– improved total ionization dose (TID) tolerance,
– reduced single event upset rates,
– increased threshold for single event latch-up,
– increased sustained processor performance,
– increased processor efficiency,
– increased speed of dynamic reconfigurability,
– reduced operating temperature range’s lower bound,
– increased the available levels of redundancy and reconfigurability, and
– increased the reliability and accuracy of radiation effects modeling.

RHESE Overview and Objectives

The Radiation Hardened Electronics for Space 
Environments (RHESE) project expands the current 

state-of-the-art in radiation-hardened electronics to develop 
high performance devices robust enough to withstand the 
demanding radiation and thermal conditions encountered 

within the space and lunar environments.
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Customer Requirements and Needs

• RHESE is a “requirements-pull” technology development effort.

• RHESE is a “cross-cutting” technology, serving a broad base of multiple 
project customers within Constellation.

– Every project requiring…
• operation in an extreme space environment,
• avionics, processors, automation, communications, etc.

…should include RHESE in its implementation trade space.

• RHESE’s products are developed in response to the needs and 
requirements of multiple Constellation program elements, including:

– Ares V Crew Launch Vehicle,
– Orion Crew Exploration Vehicle’s lunar capability,
– Lunar Lander,
– Lunar Outpost,
– Surface Systems,
– Extra Vehicular Activity (EVA) elements,
– Future applications to Mars exploration architecture elements.  

• Constellation Program requirements for avionics and electronics continue 
to evolve and become more defined.

• RHESE will develop products per derived requirements based on the 
Constellation Architecture’s Level I and Level II requirements defined to 
date.
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RHESE Tasks

• Specifically, the RHESE tasks are:
– Model of Radiation Effects on Electronics (MREE),
– Single Event Effects (SEE) Immune Reconfigurable Field 

Programmable Gate Array (FPGA) (SIRF),
– Radiation Hardened High Performance Processors (HPP),
– Reconfigurable Computing (RC),
– Silicon-Germanium (SiGe) Integrated Electronics for Extreme 

Environments.
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MREE Technology Objectives

• The Main Objective
– A computational tool to estimate radiation 

effects in space in support of spacecraft design
• Total dose
• Single Event Effects

• Secondary Objectives
– To provide a detailed description of the 

radiation environment in support of radiation 
health and instrument design

• In deep space
• Inside the magnetosphere
• Behind shielding
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Update the Method for SEE Calculation

Integral over
path length

Distribution +
critical charge

CREME96 MREE

Multi-volume Calorimetry +
Charge-collection models +

Critical charge
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SIRF Drivers

• Reconfigurable gate arrays form the basis of many adaptable, 
scaleable, computing engines

– Add flexibility, capability and robustness to surface and flight systems
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SIRF Architecture
Based on Commercial Devices

• 5th generation Virtex™ device

• Columnar Architecture enables 
resource “dial-in” of

– Logic
– Block RAM
– I/O
– DSP Slices
– PowerPC Cores

Fabrication process and device architecture 
yield a high speed, flexible component
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SIRF Objective
Radiation-hardened Device

• Existing reconfigurable FPGAs are very susceptible to radiation-
induced single event effects

– Significant FPGA resources are currently required to mitigate radiation-
induced single event effects

Objectives: Eliminate need for user-invoked TMR. Bring a state-of-the-art radiation 
hardened reconfigurable FPGA to the space electronics market by ~2010.
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HPP Drivers

• Problem: Exploration Systems Missions 
Directorate objectives and strategies 
can be constrained by computing 
capabilities and power efficiencies 

– Autonomous landing and hazard 
avoidance systems

– Autonomous vehicle operations
– Autonomous rendezvous and docking
– Vision systems
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HPP Technical Approach 
Multi-generation Performance Lag

• Radiation-hardened processors lag commercial devices by several technology generations 
(approx. 10 years)

– RHESE High performance Processor project full-success metric for general purpose processors 
conservatively keeps pace with historical trend (~Moore’s Law)
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Reconfigurable Computing
Subproject

• Subproject Objectives

• Provide reconfigurable computing capabilities as a preferred alternative to 
conventional forms

– Processor Modularity
– Interface Modularity

• Reduction of Flight Spares
• Accommodation for Circuit Life Limitations
• Resources where needed, as needed

• Supplement other efforts to mitigate environmental impacts by providing the 
capability to detect and work around malfunctioning circuitry

– Fault Tolerance
– Fault Detection, Isolation, and Mitigation

•
• Generally:  capitalize on the unique capabilities of RC to adapt in target 

systems for changing requirements, performance and environmental
parameters
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RC Technical Justification
Reconfigurable Computing Subproject

• Flight-Qualified, Multi-String Redundant Hardware is Expensive
– Development, Integration, IV&V, and Flight Qualification
– Space and Weight
– Power Consumption and Cooling

• Custom Design of Computing Resources for Every New Flight System
or Subsystem is Unnecessary and Wasteful

• Requirements for Flexibility are Increasing and Make Sense
– Reconfigurable (Flexible) and Modular Capabilities
– For Dissimilar Spares, and Incremental Changeover to New Technology:  

Capacity to use one system to back up any number of others
– General Reusability

• Current Options for Harsh/Flight Environment Systems are Limited
– Custom Hardware, Firmware, and Software
– Dedicated and Inflexible
– Often Proprietary:  Collaboration Inhibited

• Modular Spares ==  Fewer Flight Spares
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SiGe Technology

The Moon: A Classic Extreme Environment!
Extreme Temperature Ranges:

� +120C to -180C (300C T swings!)
� 28 day cycles
� -230C in shadowed polar craters

Radiation:
� 100 krad over 10 years
� single event effects (SEE)
� solar events

Many Different Circuit Needs:
� digital building blocks
� analog building blocks
� data conversion (ADC/DAC)
� RF communications
� actuation and control
� sensors / sensor interfaces

Requires “Warm Box”

Current Rovers / Robotics

Highly Mixed-Signal Flavor
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• 5” wide by 3” high by 6.75”
long = 101 cubic inches

• 11 kg weight
• 17.2 Watts power dissipation
• -55oC to +125oC • 1.5” high by 1.5” wide by 0.5”

long = 1.1 cubic inches
• < 1 kg
• < 1-2 Watts
• -180oC to +125oC, rad tolerant!

Conceptual integrated REU 
system-on-chip SiGe BiCMOS die

The X-33 Remote Health 
Monitoring Node, 
circa 1998 
(BAE)

Our Project End Game:
The SiGe ETDP Remote 
Electronics Unit, circa 2009

Specifications

Our Goals

Analog front 
end die

Digital 
control die

Supports MANY Sensor Types:
Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

REU in 
connector 
housing!

SiGe-Based Remote Electronics Unit (REU)

Use This REU as a Remote Vehicle Health Monitoring Node
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RHESE Summary

• All RHESE tasks are “requirements-
pulled” by specific Constellation 
Architecture Requirements Document  
(CARD) requirements, Lunar 
Architecture Team (LAT) technology 
needs, and surface systems’ defined 
environments.

• An application-dependent trade space 
is defined by:

– Radiation Hardening by Architecture 
using COTS processors, and

– Radiation Hardening By Design using 
Rad-Hard processors.

– Considerations include performance 
requirements, power efficiency, design 
complexity, radiation 

• Radiation and low temperature 
environments currently drive spacecraft 
system architectures.

– Centralized systems to keep 
electronics warm are costly, weighty 
and use excessive cable lengths.

– Mitigation can be achieved by active 
SiGe electronics.



22SPACE 2007 – 20 September 2007

RHESE Summary

• Radiation Environmental Modeling is 
crucial to proper predictive modeling 
and electronic response to the 
radiation environment.

– When compared to on-orbit data, 
CREME96 has been shown to be 
inaccurate in predicting the radiation 
environment.

– The NEDD bases much of its radiation 
environment data on CREME96 output.

• Close coordination and partnership with 
DoD radiation-hardened efforts will result 
in leveraged - not duplicated or 
independently developed - technology 
capabilities of:

– Radiation-hardened, reconfigurable FPGA-
based electronics, 

– High Performance Processors (NOT 
duplication or independent development).


